Convolutional Layers

Many different types of graphs convolutional layers have been proposed in the literature. Choosing the right layer for your application could involve a lot of exploration. Multiple graph convolutional layers are typically stacked together to create a graph neural network model (see GNNChain).

The table below lists all graph convolutional layers implemented in the GNNLux.jl. It also highlights the presence of some additional capabilities with respect to basic message passing:

  • Sparse Ops: implements message passing as multiplication by sparse adjacency matrix instead of the gather/scatter mechanism. This can lead to better CPU performances but it is not supported on GPU yet.
  • Edge Weight: supports scalar weights (or equivalently scalar features) on edges.
  • Edge Features: supports feature vectors on edges.
  • Heterograph: supports heterogeneous graphs (see GNNHeteroGraph).
  • TemporalSnapshotsGNNGraphs: supports temporal graphs (see TemporalSnapshotsGNNGraph) by applying the convolution layers to each snapshot independently.
LayerSparse OpsEdge WeightEdge FeaturesHeterographTemporalSnapshotsGNNGraphs
AGNNConv
CGConv
ChebConv
EGNNConv
EdgeConv
GATConv
GATv2Conv
GatedGraphConv
GCNConv
GINConv
GMMConv
GraphConv
MEGNetConv
NNConv
ResGatedGraphConv
SAGEConv
SGConv

Docs

GNNLux.AGNNConvType
AGNNConv(; init_beta=1.0f0, trainable=true, add_self_loops=true)

Attention-based Graph Neural Network layer from paper Attention-based Graph Neural Network for Semi-Supervised Learning.

The forward pass is given by

\[\mathbf{x}_i' = \sum_{j \in N(i)} \alpha_{ij} \mathbf{x}_j\]

where the attention coefficients $\alpha_{ij}$ are given by

\[\alpha_{ij} =\frac{e^{\beta \cos(\mathbf{x}_i, \mathbf{x}_j)}} {\sum_{j'}e^{\beta \cos(\mathbf{x}_i, \mathbf{x}_{j'})}}\]

with the cosine distance defined by

\[\cos(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\lVert\mathbf{x}_i\rVert \lVert\mathbf{x}_j\rVert}\]

and $\beta$ a trainable parameter if trainable=true.

Arguments

  • init_beta: The initial value of $\beta$. Default 1.0f0.
  • trainable: If true, $\beta$ is trainable. Default true.
  • add_self_loops: Add self loops to the graph before performing the convolution. Default true.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s, t)

# create layer
l = AGNNConv(init_beta=2.0f0)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)   
source
GNNLux.CGConvType
CGConv((in, ein) => out, act = identity; residual = false,
            use_bias = true, init_weight = glorot_uniform, init_bias = zeros32)
CGConv(in => out, ...)

The crystal graph convolutional layer from the paper Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Performs the operation

\[\mathbf{x}_i' = \mathbf{x}_i + \sum_{j\in N(i)}\sigma(W_f \mathbf{z}_{ij} + \mathbf{b}_f)\, act(W_s \mathbf{z}_{ij} + \mathbf{b}_s)\]

where $\mathbf{z}_{ij}$ is the node and edge features concatenation $[\mathbf{x}_i; \mathbf{x}_j; \mathbf{e}_{j\to i}]$ and $\sigma$ is the sigmoid function. The residual $\mathbf{x}_i$ is added only if residual=true and the output size is the same as the input size.

Arguments

  • in: The dimension of input node features.
  • ein: The dimension of input edge features.

If ein is not given, assumes that no edge features are passed as input in the forward pass.

  • out: The dimension of output node features.
  • act: Activation function.
  • residual: Add a residual connection.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create random graph
g = rand_graph(rng, 5, 6)
x = rand(rng, Float32, 2, g.num_nodes)
e = rand(rng, Float32, 3, g.num_edges)

l = CGConv((2, 3) => 4, tanh)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, e, ps, st)    # size: (4, num_nodes)

# No edge features
l = CGConv(2 => 4, tanh)
ps, st = LuxCore.setup(rng, l)
y, st = l(g, x, ps, st)    # size: (4, num_nodes)
source
GNNLux.ChebConvType
ChebConv(in => out, k; init_weight = glorot_uniform, init_bias = zeros32, use_bias = true)

Chebyshev spectral graph convolutional layer from paper Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

Implements

\[X' = \sum^{K-1}_{k=0} W^{(k)} Z^{(k)}\]

where $Z^{(k)}$ is the $k$-th term of Chebyshev polynomials, and can be calculated by the following recursive form:

\[\begin{aligned} Z^{(0)} &= X \\ Z^{(1)} &= \hat{L} X \\ Z^{(k)} &= 2 \hat{L} Z^{(k-1)} - Z^{(k-2)} \end{aligned}\]

with $\hat{L}$ the scaled_laplacian.

Arguments

  • in: The dimension of input features.
  • out: The dimension of output features.
  • k: The order of Chebyshev polynomial.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = ChebConv(3 => 5, 5)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size of the output y:  5 × num_nodes
source
GNNLux.DConvType
DConv(in => out, k; init_weight = glorot_uniform, init_bias = zeros32, use_bias = true)

Diffusion convolution layer from the paper Diffusion Convolutional Recurrent Neural Networks: Data-Driven Traffic Forecasting.

Arguments

  • in: The dimension of input features.
  • out: The dimension of output features.
  • k: Number of diffusion steps.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create random graph
g = GNNGraph(rand(rng, 10, 10), ndata = rand(rng, Float32, 2, 10))

dconv = DConv(2 => 4, 4)

# setup layer
ps, st = LuxCore.setup(rng, dconv)

# forward pass
y, st = dconv(g, g.ndata.x, ps, st)   # size: (4, num_nodes)
source
GNNLux.EGNNConvType
EGNNConv((in, ein) => out; hidden_size=2in, residual=false)
EGNNConv(in => out; hidden_size=2in, residual=false)

Equivariant Graph Convolutional Layer from E(n) Equivariant Graph Neural Networks.

The layer performs the following operation:

\[\begin{aligned} \mathbf{m}_{j\to i} &=\phi_e(\mathbf{h}_i, \mathbf{h}_j, \lVert\mathbf{x}_i-\mathbf{x}_j\rVert^2, \mathbf{e}_{j\to i}),\\ \mathbf{x}_i' &= \mathbf{x}_i + C_i\sum_{j\in\mathcal{N}(i)}(\mathbf{x}_i-\mathbf{x}_j)\phi_x(\mathbf{m}_{j\to i}),\\ \mathbf{m}_i &= C_i\sum_{j\in\mathcal{N}(i)} \mathbf{m}_{j\to i},\\ \mathbf{h}_i' &= \mathbf{h}_i + \phi_h(\mathbf{h}_i, \mathbf{m}_i) \end{aligned}\]

where $\mathbf{h}_i$, $\mathbf{x}_i$, $\mathbf{e}_{j\to i}$ are invariant node features, equivariant node features, and edge features respectively. $\phi_e$, $\phi_h$, and $\phi_x$ are two-layer MLPs. C is a constant for normalization, computed as $1/|\mathcal{N}(i)|$.

Constructor Arguments

  • in: Number of input features for h.
  • out: Number of output features for h.
  • ein: Number of input edge features.
  • hidden_size: Hidden representation size.
  • residual: If true, add a residual connection. Only possible if in == out. Default false.

Forward Pass

l(g, x, h, e=nothing, ps, st)

Forward Pass Arguments:

  • g : The graph.
  • x : Matrix of equivariant node coordinates.
  • h : Matrix of invariant node features.
  • e : Matrix of invariant edge features. Default nothing.
  • ps : Parameters.
  • st : State.

Returns updated h and x.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create random graph
g = rand_graph(rng, 10, 10)
h = randn(rng, Float32, 5, g.num_nodes)
x = randn(rng, Float32, 3, g.num_nodes)

egnn = EGNNConv(5 => 6, 10)

# setup layer
ps, st = LuxCore.setup(rng, egnn)

# forward pass
(hnew, xnew), st = egnn(g, h, x, ps, st)
source
GNNLux.EdgeConvType
EdgeConv(nn; aggr=max)

Edge convolutional layer from paper Dynamic Graph CNN for Learning on Point Clouds.

Performs the operation

\[\mathbf{x}_i' = \square_{j \in N(i)}\, nn([\mathbf{x}_i; \mathbf{x}_j - \mathbf{x}_i])\]

where nn generally denotes a learnable function, e.g. a linear layer or a multi-layer perceptron.

Arguments

  • nn: A (possibly learnable) function.
  • aggr: Aggregation operator for the incoming messages (e.g. +, *, max, min, and mean).

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = rand(rng, Float32, in_channel, g.num_nodes)

# create layer
l = EdgeConv(Dense(2 * in_channel, out_channel), aggr = +)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)
source
GNNLux.GATConvType
GATConv(in => out, σ = identity; heads = 1, concat = true, negative_slope = 0.2, init_weight = glorot_uniform, init_bias = zeros32, use_bias = true, add_self_loops = true, dropout=0.0)
GATConv((in, ein) => out, ...)

Graph attentional layer from the paper Graph Attention Networks.

Implements the operation

\[\mathbf{x}_i' = \sum_{j \in N(i) \cup \{i\}} \alpha_{ij} W \mathbf{x}_j\]

where the attention coefficients $\alpha_{ij}$ are given by

\[\alpha_{ij} = \frac{1}{z_i} \exp(LeakyReLU(\mathbf{a}^T [W \mathbf{x}_i; W \mathbf{x}_j]))\]

with $z_i$ a normalization factor.

In case ein > 0 is given, edge features of dimension ein will be expected in the forward pass and the attention coefficients will be calculated as

\[\alpha_{ij} = \frac{1}{z_i} \exp(LeakyReLU(\mathbf{a}^T [W_e \mathbf{e}_{j\to i}; W \mathbf{x}_i; W \mathbf{x}_j]))\]

Arguments

  • in: The dimension of input node features.
  • ein: The dimension of input edge features. Default 0 (i.e. no edge features passed in the forward).
  • out: The dimension of output node features.
  • σ: Activation function. Default identity.
  • heads: Number attention heads. Default 1.
  • concat: Concatenate layer output or not. If not, layer output is averaged over the heads. Default true.
  • negative_slope: The parameter of LeakyReLU.Default 0.2.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.
  • add_self_loops: Add self loops to the graph before performing the convolution. Default true.
  • dropout: Dropout probability on the normalized attention coefficient. Default 0.0.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = GATConv(in_channel => out_channel; add_self_loops = false, use_bias = false, heads=2, concat=true)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       
source
GNNLux.GATv2ConvType
GATv2Conv(in => out, σ = identity; heads = 1, concat = true, negative_slope = 0.2, init_weight = glorot_uniform, init_bias = zeros32, use_bias = true, add_self_loops = true, dropout=0.0)
GATv2Conv((in, ein) => out, ...)

GATv2 attentional layer from the paper How Attentive are Graph Attention Networks?.

Implements the operation

\[\mathbf{x}_i' = \sum_{j \in N(i) \cup \{i\}} \alpha_{ij} W_1 \mathbf{x}_j\]

where the attention coefficients $\alpha_{ij}$ are given by

\[\alpha_{ij} = \frac{1}{z_i} \exp(\mathbf{a}^T LeakyReLU(W_2 \mathbf{x}_i + W_1 \mathbf{x}_j))\]

with $z_i$ a normalization factor.

In case ein > 0 is given, edge features of dimension ein will be expected in the forward pass and the attention coefficients will be calculated as

\[\alpha_{ij} = \frac{1}{z_i} \exp(\mathbf{a}^T LeakyReLU(W_3 \mathbf{e}_{j\to i} + W_2 \mathbf{x}_i + W_1 \mathbf{x}_j)).\]

Arguments

  • in: The dimension of input node features.
  • ein: The dimension of input edge features. Default 0 (i.e. no edge features passed in the forward).
  • out: The dimension of output node features.
  • σ: Activation function. Default identity.
  • heads: Number attention heads. Default 1.
  • concat: Concatenate layer output or not. If not, layer output is averaged over the heads. Default true.
  • negative_slope: The parameter of LeakyReLU.Default 0.2.
  • add_self_loops: Add self loops to the graph before performing the convolution. Default true.
  • dropout: Dropout probability on the normalized attention coefficient. Default 0.0.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
ein = 3
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = GATv2Conv((in_channel, ein) => out_channel, add_self_loops = false)

# setup layer
ps, st = LuxCore.setup(rng, l)

# edge features
e = randn(rng, Float32, ein, length(s))

# forward pass
y, st = l(g, x, e, ps, st)    
source
GNNLux.GCNConvType
GCNConv(in => out, σ=identity; [init_weight, init_bias, use_bias, add_self_loops, use_edge_weight])

Graph convolutional layer from paper Semi-supervised Classification with Graph Convolutional Networks.

Performs the operation

\[\mathbf{x}'_i = \sum_{j\in N(i)} a_{ij} W \mathbf{x}_j\]

where $a_{ij} = 1 / \sqrt{|N(i)||N(j)|}$ is a normalization factor computed from the node degrees.

If the input graph has weighted edges and use_edge_weight=true, than $a_{ij}$ will be computed as

\[a_{ij} = \frac{e_{j\to i}}{\sqrt{\sum_{j \in N(i)} e_{j\to i}} \sqrt{\sum_{i \in N(j)} e_{i\to j}}}\]

Arguments

  • in: Number of input features.
  • out: Number of output features.
  • σ: Activation function. Default identity.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.
  • add_self_loops: Add self loops to the graph before performing the convolution. Default false.
  • use_edge_weight: If true, consider the edge weights in the input graph (if available). If add_self_loops=true the new weights will be set to 1. This option is ignored if the edge_weight is explicitly provided in the forward pass. Default false.

Forward

(::GCNConv)(g, x, [edge_weight], ps, st; norm_fn = d -> 1 ./ sqrt.(d), conv_weight=nothing)

Takes as input a graph g, a node feature matrix x of size [in, num_nodes], optionally an edge weight vector and the parameter and state of the layer. Returns a node feature matrix of size [out, num_nodes].

The norm_fn parameter allows for custom normalization of the graph convolution operation by passing a function as argument. By default, it computes $\frac{1}{\sqrt{d}}$ i.e the inverse square root of the degree (d) of each node in the graph. If conv_weight is an AbstractMatrix of size [out, in], then the convolution is performed using that weight matrix.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = GCNConv(3 => 5) 

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y = l(g, x, ps, st)       # size of the output first entry:  5 × num_nodes

# convolution with edge weights and custom normalization function
w = [1.1, 0.1, 2.3, 0.5]
custom_norm_fn(d) = 1 ./ sqrt.(d + 1)  # Custom normalization function
y = l(g, x, w, ps, st; norm_fn = custom_norm_fn)

# Edge weights can also be embedded in the graph.
g = GNNGraph(s, t, w)
l = GCNConv(3 => 5, use_edge_weight=true)
ps, st = Lux.setup(rng, l)
y = l(g, x, ps, st) # same as l(g, x, w) 
source
GNNLux.GINConvType
GINConv(f, ϵ; aggr=+)

Graph Isomorphism convolutional layer from paper How Powerful are Graph Neural Networks?.

Implements the graph convolution

\[\mathbf{x}_i' = f_\Theta\left((1 + \epsilon) \mathbf{x}_i + \sum_{j \in N(i)} \mathbf{x}_j \right)\]

where $f_\Theta$ typically denotes a learnable function, e.g. a linear layer or a multi-layer perceptron.

Arguments

  • f: A (possibly learnable) function acting on node features.
  • ϵ: Weighting factor.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = randn(rng, Float32, in_channel, g.num_nodes)

# create dense layer
nn = Dense(in_channel, out_channel)

# create layer
l = GINConv(nn, 0.01f0, aggr = mean)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size:  out_channel × num_nodes
source
GNNLux.GMMConvType
GMMConv((in, ein) => out, σ=identity; K = 1, residual = false init_weight = glorot_uniform, init_bias = zeros32, use_bias = true)

Graph mixture model convolution layer from the paper Geometric deep learning on graphs and manifolds using mixture model CNNs Performs the operation

\[\mathbf{x}_i' = \mathbf{x}_i + \frac{1}{|N(i)|} \sum_{j\in N(i)}\frac{1}{K}\sum_{k=1}^K \mathbf{w}_k(\mathbf{e}_{j\to i}) \odot \Theta_k \mathbf{x}_j\]

where $w^a_{k}(e^a)$ for feature a and kernel k is given by

\[w^a_{k}(e^a) = \exp(-\frac{1}{2}(e^a - \mu^a_k)^T (\Sigma^{-1})^a_k(e^a - \mu^a_k))\]

$\Theta_k, \mu^a_k, (\Sigma^{-1})^a_k$ are learnable parameters.

The input to the layer is a node feature array x of size (num_features, num_nodes) and edge pseudo-coordinate array e of size (num_features, num_edges) The residual $\mathbf{x}_i$ is added only if residual=true and the output size is the same as the input size.

Arguments

  • in: Number of input node features.
  • ein: Number of input edge features.
  • out: Number of output features.
  • σ: Activation function. Default identity.
  • K: Number of kernels. Default 1.
  • residual: Residual conncetion. Default false.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s,t)
nin, ein, out, K = 4, 10, 7, 8 
x = randn(rng, Float32, nin, g.num_nodes)
e = randn(rng, Float32, ein, g.num_edges)

# create layer
l = GMMConv((nin, ein) => out, K=K)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, e, ps, st)       # size:  out × num_nodes
source
GNNLux.GatedGraphConvType
GatedGraphConv(out, num_layers; 
        aggr = +, init_weight = glorot_uniform)

Gated graph convolution layer from Gated Graph Sequence Neural Networks.

Implements the recursion

\[\begin{aligned} \mathbf{h}^{(0)}_i &= [\mathbf{x}_i; \mathbf{0}] \\ \mathbf{h}^{(l)}_i &= GRU(\mathbf{h}^{(l-1)}_i, \square_{j \in N(i)} W \mathbf{h}^{(l-1)}_j) \end{aligned}\]

where $\mathbf{h}^{(l)}_i$ denotes the $l$-th hidden variables passing through GRU. The dimension of input $\mathbf{x}_i$ needs to be less or equal to out.

Arguments

  • out: The dimension of output features.
  • num_layers: The number of recursion steps.
  • aggr: Aggregation operator for the incoming messages (e.g. +, *, max, min, and mean).
  • init_weight: Weights' initializer. Default glorot_uniform.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
out_channel = 5
num_layers = 3
g = GNNGraph(s, t)

# create layer
l = GatedGraphConv(out_channel, num_layers)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size:  out_channel × num_nodes  
source
GNNLux.GraphConvType
GraphConv(in => out, σ = identity; aggr = +, init_weight = glorot_uniform,init_bias = zeros32, use_bias = true)

Graph convolution layer from Reference: Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks.

Performs:

\[\mathbf{x}_i' = W_1 \mathbf{x}_i + \square_{j \in \mathcal{N}(i)} W_2 \mathbf{x}_j\]

where the aggregation type is selected by aggr.

Arguments

  • in: The dimension of input features.
  • out: The dimension of output features.
  • σ: Activation function.
  • aggr: Aggregation operator for the incoming messages (e.g. +, *, max, min, and mean).
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = GraphConv(in_channel => out_channel, relu, use_bias = false, aggr = mean)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size of the output y:  5 × num_nodes
source
GNNLux.MEGNetConvType
MEGNetConv(ϕe, ϕv; aggr=mean)
MEGNetConv(in => out; aggr=mean)

Convolution from Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals paper. In the forward pass, takes as inputs node features x and edge features e and returns updated features x' and e' according to

\[\begin{aligned} \mathbf{e}_{i\to j}' = \phi_e([\mathbf{x}_i;\, \mathbf{x}_j;\, \mathbf{e}_{i\to j}]),\\ \mathbf{x}_{i}' = \phi_v([\mathbf{x}_i;\, \square_{j\in \mathcal{N}(i)}\,\mathbf{e}_{j\to i}']). \end{aligned}\]

aggr defines the aggregation to be performed.

If the neural networks ϕe and ϕv are not provided, they will be constructed from the in and out arguments instead as multi-layer perceptron with one hidden layer and relu activations.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create a random graph
g = rand_graph(rng, 10, 30)
x = randn(rng, Float32, 3, 10)
e = randn(rng, Float32, 3, 30)

# create a MEGNetConv layer
m = MEGNetConv(3 => 3)

# setup layer
ps, st = LuxCore.setup(rng, m)

# forward pass
(x′, e′), st = m(g, x, e, ps, st)
source
GNNLux.NNConvType
NNConv(in => out, f, σ=identity; aggr=+, init_bias = zeros32, use_bias = true, init_weight = glorot_uniform)

The continuous kernel-based convolutional operator from the Neural Message Passing for Quantum Chemistry paper. This convolution is also known as the edge-conditioned convolution from the Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs paper.

Performs the operation

\[\mathbf{x}_i' = W \mathbf{x}_i + \square_{j \in N(i)} f_\Theta(\mathbf{e}_{j\to i})\,\mathbf{x}_j\]

where $f_\Theta$ denotes a learnable function (e.g. a linear layer or a multi-layer perceptron). Given an input of batched edge features e of size (num_edge_features, num_edges), the function f will return an batched matrices array whose size is (out, in, num_edges). For convenience, also functions returning a single (out*in, num_edges) matrix are allowed.

Arguments

  • in: The dimension of input node features.
  • out: The dimension of output node features.
  • f: A (possibly learnable) function acting on edge features.
  • aggr: Aggregation operator for the incoming messages (e.g. +, *, max, min, and mean).
  • σ: Activation function.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
n_in = 3
n_in_edge = 10
n_out = 5

s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s, t)
x = randn(rng, Float32, n_in, g.num_nodes)
e = randn(rng, Float32, n_in_edge, g.num_edges)

# create dense layer
nn = Dense(n_in_edge => n_out * n_in)

# create layer
l = NNConv(n_in => n_out, nn, tanh, use_bias = true, aggr = +)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, e, ps, st)       # size:  n_out × num_nodes 
source
GNNLux.ResGatedGraphConvType
ResGatedGraphConv(in => out, act=identity; init_weight = glorot_uniform, init_bias = zeros32, use_bias = true)

The residual gated graph convolutional operator from the Residual Gated Graph ConvNets paper.

The layer's forward pass is given by

\[\mathbf{x}_i' = act\big(U\mathbf{x}_i + \sum_{j \in N(i)} \eta_{ij} V \mathbf{x}_j\big),\]

where the edge gates $\eta_{ij}$ are given by

\[\eta_{ij} = sigmoid(A\mathbf{x}_i + B\mathbf{x}_j).\]

Arguments

  • in: The dimension of input features.
  • out: The dimension of output features.
  • act: Activation function.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = randn(rng, Float32, in_channel, g.num_nodes)

# create layer
l = ResGatedGraphConv(in_channel => out_channel, tanh, use_bias = true)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size:  out_channel × num_nodes  
source
GNNLux.SAGEConvType
SAGEConv(in => out, σ=identity; aggr=mean, init_weight = glorot_uniform, init_bias = zeros32, use_bias=true)

GraphSAGE convolution layer from paper Inductive Representation Learning on Large Graphs.

Performs:

\[\mathbf{x}_i' = W \cdot [\mathbf{x}_i; \square_{j \in \mathcal{N}(i)} \mathbf{x}_j]\]

where the aggregation type is selected by aggr.

Arguments

  • in: The dimension of input features.
  • out: The dimension of output features.
  • σ: Activation function.
  • aggr: Aggregation operator for the incoming messages (e.g. +, *, max, min, and mean).
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples:

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
in_channel = 3
out_channel = 5
g = GNNGraph(s, t)
x = rand(rng, Float32, in_channel, g.num_nodes)

# create layer
l = SAGEConv(in_channel => out_channel, tanh, use_bias = false, aggr = +)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size:  out_channel × num_nodes   
source
GNNLux.SGConvType
SGConv(int => out, k = 1; init_weight = glorot_uniform, init_bias = zeros32, use_bias = true, add_self_loops = true,use_edge_weight = false)

SGC layer from Simplifying Graph Convolutional Networks Performs operation

\[H^{K} = (\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2})^K X \Theta\]

where $\tilde{A}$ is $A + I$.

Arguments

  • in: Number of input features.
  • out: Number of output features.
  • k : Number of hops k. Default 1.
  • add_self_loops: Add self loops to the graph before performing the convolution. Default false.
  • use_edge_weight: If true, consider the edge weights in the input graph (if available). If add_self_loops=true the new weights will be set to 1. Default false.
  • init_weight: Weights' initializer. Default glorot_uniform.
  • init_bias: Bias initializer. Default zeros32.
  • use_bias: Add learnable bias. Default true.

Examples

using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
s = [1,1,2,3]
t = [2,3,1,1]
g = GNNGraph(s, t)
x = randn(rng, Float32, 3, g.num_nodes)

# create layer
l = SGConv(3 => 5; add_self_loops = true) 

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st)       # size:  5 × num_nodes

# convolution with edge weights
w = [1.1, 0.1, 2.3, 0.5]
y = l(g, x, w, ps, st)

# Edge weights can also be embedded in the graph.
g = GNNGraph(s, t, w)
l = SGConv(3 => 5, add_self_loops = true, use_edge_weight=true) 
ps, st = LuxCore.setup(rng, l)
y, st = l(g, x, ps, st) # same as l(g, x, w) 
source