Operators
Graphs.jl implements the following graph operators. In general, functions with two graph arguments will require them to be of the same type (either both SimpleGraph or both SimpleDiGraph).
Index
Base.getindexBase.intersectBase.joinBase.reverseBase.reverse!Base.sizeBase.sumBase.sumBase.unionGraphs.cartesian_productGraphs.complementGraphs.compute_shiftsGraphs.crosspathGraphs.differenceGraphs.egonetGraphs.induced_subgraphGraphs.merge_verticesGraphs.merge_vertices!Graphs.symmetric_differenceGraphs.tensor_productSparseArrays.blockdiagSparseArrays.sparse
Full docs
Base.getindex — Method
g[iter]Return the subgraph induced by iter. Equivalent to induced_subgraph(g, iter)[1].
Base.intersect — Method
intersect(g, h)Return a graph with edges that are only in both graph g and graph h.
Implementation Notes
This function may produce a graph with 0-degree vertices. Preserves the eltype of the input graph.
Examples
julia> using Graphs
julia> g1 = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> g2 = SimpleDiGraph([0 1 0; 0 0 1; 1 0 0]);
julia> foreach(println, edges(intersect(g1, g2)))
Edge 1 => 2
Edge 2 => 3
Edge 3 => 1Base.join — Method
join(g, h)Return a graph that combines graphs g and h using blockdiag and then adds all the edges between the vertices in g and those in h.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = join(star_graph(3), path_graph(2))
{5, 9} undirected simple Int64 graph
julia> collect(edges(g))
9-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 1 => 3
Edge 1 => 4
Edge 1 => 5
Edge 2 => 4
Edge 2 => 5
Edge 3 => 4
Edge 3 => 5
Edge 4 => 5Base.reverse — Function
reverse(g)Return a directed graph where all edges are reversed from the original directed graph.
Implementation Notes
Preserves the eltype of the input graph.
Examples
julia> using Graphs
julia> g = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> foreach(println, edges(reverse(g)))
Edge 1 => 3
Edge 2 => 1
Edge 3 => 2
Edge 4 => 3
Edge 4 => 5
Edge 5 => 4Base.reverse! — Function
reverse!(g)In-place reverse of a directed graph (modifies the original graph). See reverse for a non-modifying version.
Base.sum — Method
sum(g, i)Return a vector of indegree (i=1) or outdegree (i=2) values for graph g.
Examples
julia> using Graphs
julia> g = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> sum(g, 2)
5-element Vector{Int64}:
1
1
2
1
1
julia> sum(g, 1)
5-element Vector{Int64}:
1
1
1
2
1Base.union — Method
union(g, h)Return a graph that combines graphs g and h by taking the set union of all vertices and edges.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = SimpleGraph(3); h = SimpleGraph(5);
julia> add_edge!(g, 1, 2);
julia> add_edge!(g, 1, 3);
julia> add_edge!(h, 3, 4);
julia> add_edge!(h, 3, 5);
julia> add_edge!(h, 4, 5);
julia> f = union(g, h);
julia> collect(edges(f))
5-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 1 => 3
Edge 3 => 4
Edge 3 => 5
Edge 4 => 5Graphs.cartesian_product — Method
cartesian_product(g, h)Return the cartesian product of g and h.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = cartesian_product(star_graph(3), path_graph(3))
{9, 12} undirected simple Int64 graph
julia> collect(edges(g))
12-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 1 => 4
Edge 1 => 7
Edge 2 => 3
Edge 2 => 5
Edge 2 => 8
Edge 3 => 6
Edge 3 => 9
Edge 4 => 5
Edge 5 => 6
Edge 7 => 8
Edge 8 => 9Graphs.complement — Method
complement(g)Return the graph complement of a graph
Implementation Notes
Preserves the eltype of the input graph.
Examples
julia> using Graphs
julia> g = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> foreach(println, edges(complement(g)))
Edge 1 => 3
Edge 1 => 4
Edge 1 => 5
Edge 2 => 1
Edge 2 => 4
Edge 2 => 5
Edge 3 => 2
Edge 3 => 5
Edge 4 => 1
Edge 4 => 2
Edge 4 => 3
Edge 5 => 1
Edge 5 => 2
Edge 5 => 3Graphs.compute_shifts — Method
compute_shifts(n::Int, x::AbstractArray)Determine how many elements of x are less than i for all i in 1:n.
Graphs.crosspath — Function
crosspath(len::Integer, g::Graph)Return a graph that duplicates g len times and connects each vertex with its copies in a path.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = crosspath(3, path_graph(3))
{9, 12} undirected simple Int64 graph
julia> collect(edges(g))
12-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 1 => 4
Edge 2 => 3
Edge 2 => 5
Edge 3 => 6
Edge 4 => 5
Edge 4 => 7
Edge 5 => 6
Edge 5 => 8
Edge 6 => 9
Edge 7 => 8
Edge 8 => 9Graphs.difference — Method
difference(g, h)Return a graph with edges in graph g that are not in graph h.
Implementation Notes
Note that this function may produce a graph with 0-degree vertices. Preserves the eltype of the input graph.
Examples
julia> using Graphs
julia> g1 = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> g2 = SimpleDiGraph([0 1 0; 0 0 1; 1 0 0]);
julia> foreach(println, edges(difference(g1, g2)))
Edge 3 => 4
Edge 4 => 5
Edge 5 => 4Graphs.egonet — Method
egonet(g, v, d, distmx=weights(g))Return the subgraph of g induced by the neighbors of v up to distance d, using weights (optionally) provided by distmx. This is equivalent to induced_subgraph(g, neighborhood(g, v, d, dir=dir))[1].
Optional Arguments
dir=:out: ifgis directed, this argument specifies the edge direction
with respect to v (i.e. :in or :out).
Graphs.induced_subgraph — Method
induced_subgraph(g, vlist)
induced_subgraph(g, elist)Return the subgraph of g induced by the vertices in vlist or edges in elist along with a vector mapping the new vertices to the old ones (the vertex i in the subgraph corresponds to the vertex vmap[i] in g.)
The returned graph has length(vlist) vertices, with the new vertex i corresponding to the vertex of the original graph in the i-th position of vlist.
Usage Examples
julia> g = complete_graph(10)
julia> sg, vmap = induced_subgraph(g, 5:8)
julia> @assert g[5:8] == sg
julia> @assert nv(sg) == 4
julia> @assert ne(sg) == 6
julia> @assert vm[4] == 8
julia> sg, vmap = induced_subgraph(g, [2,8,3,4])
julia> @assert sg == g[[2,8,3,4]]
julia> elist = [Edge(1,2), Edge(3,4), Edge(4,8)]
julia> sg, vmap = induced_subgraph(g, elist)
julia> @assert sg == g[elist]Graphs.merge_vertices! — Method
merge_vertices!(g, vs)Combine vertices specified in vs into single vertex whose index will be the lowest value in vs. All edges connected to vertices in vs connect to the new merged vertex.
Return a vector with new vertex values are indexed by the original vertex indices.
Implementation Notes
Supports SimpleGraph only.
Examples
julia> using Graphs
julia> g = path_graph(5);
julia> collect(edges(g))
4-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 2 => 3
Edge 3 => 4
Edge 4 => 5
julia> merge_vertices!(g, [2, 3])
5-element Vector{Int64}:
1
2
2
3
4
julia> collect(edges(g))
3-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 2 => 3
Edge 3 => 4Graphs.merge_vertices — Method
merge_vertices(g::AbstractGraph, vs)Create a new graph where all vertices in vs have been aliased to the same vertex minimum(vs).
Examples
julia> using Graphs
julia> g = path_graph(5);
julia> collect(edges(g))
4-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 2 => 3
Edge 3 => 4
Edge 4 => 5
julia> h = merge_vertices(g, [2, 3]);
julia> collect(edges(h))
3-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 2 => 3
Edge 3 => 4Graphs.symmetric_difference — Method
symmetric_difference(g, h)Return a graph with edges from graph g that do not exist in graph h, and vice versa.
Implementation Notes
Note that this function may produce a graph with 0-degree vertices. Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = SimpleGraph(3); h = SimpleGraph(3);
julia> add_edge!(g, 1, 2);
julia> add_edge!(h, 1, 3);
julia> add_edge!(h, 2, 3);
julia> f = symmetric_difference(g, h);
julia> collect(edges(f))
3-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 2
Edge 1 => 3
Edge 2 => 3Graphs.tensor_product — Method
tensor_product(g, h)Return the tensor product of g and h.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g = tensor_product(star_graph(3), path_graph(3))
{9, 8} undirected simple Int64 graph
julia> collect(edges(g))
8-element Vector{Graphs.SimpleGraphs.SimpleEdge{Int64}}:
Edge 1 => 5
Edge 1 => 8
Edge 2 => 4
Edge 2 => 6
Edge 2 => 7
Edge 2 => 9
Edge 3 => 5
Edge 3 => 8SparseArrays.blockdiag — Method
blockdiag(g, h)Return a graph with $|V(g)| + |V(h)|$ vertices and $|E(g)| + |E(h)|$ edges where the vertices and edges from graph h are appended to graph g.
Implementation Notes
Preserves the eltype of the input graph. Will error if the number of vertices in the generated graph exceeds the eltype.
Examples
julia> using Graphs
julia> g1 = SimpleDiGraph([0 1 0 0 0; 0 0 1 0 0; 1 0 0 1 0; 0 0 0 0 1; 0 0 0 1 0]);
julia> g2 = SimpleDiGraph([0 1 0; 0 0 1; 1 0 0]);
julia> blockdiag(g1, g2)
{8, 9} directed simple Int64 graph
julia> foreach(println, edges(blockdiag(g1, g2)))
Edge 1 => 2
Edge 2 => 3
Edge 3 => 1
Edge 3 => 4
Edge 4 => 5
Edge 5 => 4
Edge 6 => 7
Edge 7 => 8
Edge 8 => 6SparseArrays.sparse — Method
sparse(g)Return the default adjacency matrix of g.